Effect of experimental hyperthyroidism on skeletal-muscle proteolysis.
نویسندگان
چکیده
It is not clear whether the muscle wasting commonly observed in hyperthyroidism is due to alteration in the rate of protein synthesis or degradation. The effect of experimental hyperthyroidism on skeletal-muscle proteolysis in the rat was studied by measuring alanine and tyrosine release from isolated skeletal muscles in vitro and 3-methyl-histidine excretion in vivo. Alanine release from the isolated epitrochlaris-muscle preparation was increased as soon as 24h after a 25 microgram dose of L-tri-iodothyronine in vivo. Conversely, alanine release from muscles of hypothyroid rats was decreased, but restored by L-tri-iodothyronine supplementation before death. Furthermore, 3-methylhistidine excretion was increased in hyperthyroid rats throughout an 18-day treatment period. The increased amino acid release from isolated muscles and the increased 3-methylhistidine excretion in vivo strongly suggests that hyperthyroidism increases skeletal-muscle proteolysis. Furthermore, the thyroid-hormone concentration may be an important factor in regulating muscle proteolysis.
منابع مشابه
Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.
Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed prot...
متن کاملRegulation of protein degradation in skeletal muscle.
Protein balance in rat muscles incubated in vitro is influenced by the supply of insulin, leucine and various hormones at physiological concentrations (0.1-0.5 mM) (Goldberg & Chang, 1978; Goldberg et al., 1980). Leucine, but no other amino acid, stimulates protein synthesis and inhibits protein breakdown in this tissue. Metabolism of leucine is necessary for its inhibitory effect on proteolysi...
متن کاملThe Effect of High and Low-Intensity Interval Training on TRF1 and TRF2 Gene Expression in Slow and Fast-Twitch Skeletal Muscles of C57BL/6 Mice: An Experimental Study
Background and Objectives: The process of chronic diseases and aging is associated with reduced telomere length. The aim of this study was to investigate the effect of high-intensity interval training (HIIT) and low-intensity interval training (LIIT) on telomere repeat binding factor 1 and 2 (TRF1 and TRF2) in Soleus (SOL) muscle as a slow-twitch (ST) and Extensor Digitorum Longus (EDL) muscle ...
متن کاملThe effect of high-intensity interval training (HIIT) on gene expression of apoptotic markers in the skeletal muscle of diabetic rats
Background and Aims: Apoptosis plays important roles in the pathophysiology of Type 2 diabetes. The aim of this study was to evaluate the effect of high-intensity interval training (HIIT) on gene expression of apoptotic markers in the skeletal muscle of diabetic rats. Methods: To implementation of this experimental research, 60 male Wistar rats weighing 220 ± 20 gr randomly were divided into 5 ...
متن کاملSkeletal muscle glucose disposal after re-feeding in the hyperthyroid rat.
Experimental hyperthyroidism has been demonstrated to influence insulin-stimulated glucose utilization in isolated skeletal muscle preparations from fed or starved rats, with increased glycogen-glucose < 1 -phosphate cycling [ I ] and diversion of carbon from net glycogenesis (storage) to glycolysis (degradation) [2]. The present study investigated whether this effect of hyperthywidism is also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 194 3 شماره
صفحات -
تاریخ انتشار 1981